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Some effects of surface tension on steep water waves. Part 3 
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(Received 4 June 1980 and in revised form 20 January 1981) 

This is the final part in the work on steady gravity-capillary waves by the author. 
On extending the work of Pierson & Fife (1961), the phenomenon of Wilton’s ripples 
is resolved. These singularities of the traditional solution procedure are merely 
consequences of the non-uniformity in the ordering of the Fourier coefficients of the 
wave profile. Results presented here include wave properties and profiles. Near- 
resonant waves are also considered. Good agreement is found between this work and 
previous papers in the series as well as with other authors. An appendix contains all 
the results in numerical form. Minor algebiaic errors in Wilton’s original work are 
corre c ted . 

1. Introduction 
In  recent work of the present author (Hogan 1979a, 1980a, referred to as I and I1 

respectively) results were given for wave properties throughout most of the gravity- 
capillary wave range. Full details of the problem are given in those papers. I con- 
tained exact relationships between integral properties which are valid for all waves, 
as well as giving exact expressions for these properties in the special case of pure 
capillary waves (gravitational effects absent). The work of Schwartz (1974) was 
extended in I1 to include the surface tension. Capillary waves (wavelength less than 
2 cm in water) were found to be similar in many respects to  pure capillary waves. 
Gravity waves (more than 20 cm long) were similar to pure gravity waves, that is, 
when surface tension effects are absent. 

An unexpected result for capillary waves was the rapid decrease with increasing 
wave height of the gravitational potential energy, V,  (see equation II(3.12) for defini- 
tion). This decrease, after the expected increase, is intimately connected with the 
extreme distortion of the profile (and hence dramatic rise in surface potential energy 
F) as the wave gets higher and starts to enclose a bubble of air in its trough. As a 
result the crest height of the wave above the mean level is not a monotonic function 
of the wave height. This was shown, analytically, to be true also for pure capillary 
waves (see I for details). For gravity waves it was found that the type of non- 
monotonicity associated with integral properties of pure gravity waves disappeared 
with increasing relative importance of surface tension to gravity. A measure of this 
importance is given by the dimensionless parameter K defined as 

where 7 is the surface tension coefficient divided by the density, A is the wavelength 
13-2 
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and g is the acceleration due to gravity. Schwartz’s solution procedure failed at the 
so-called Wilton’s (1915) ripples corresponding to values of K = l / n  (n = 2,3, ...). 

By a remarkable coincidence three separate independent pieces of work, on the 
same subject, were completed a t  around the same time as I and 11. It is not the 
purpose of this paper to compare the four different approaches. Rather we summarize 
very briefly each method and some of their principal results. Rottman & Olfe (1979) 
derived an integral equation for the wave profile y = ~ ( x ) ,  using an image flow. 
Despite the fact that they did not parametrize the (x, y) co-ordinates, thus excluding 
profiles multivalued in y, they obtained numerical results for wave properties of 
pure capillary waves with no vertical tangents and wave profiles of waves at  and 
near K = i. They noted that, for a given value of K,  afull wave profile of certainheight 
was identical with a half-wave profile with a parameter value 4 ~ .  Schwartz & Vanden- 
Broeck (1979) used a more powerful technique, centred on the Hilbert formulae for 
the unit circle. This involves the Cauchy principal part of an integral. They took r 
points on the wave profile and, with the phase speed c, solved the resulting T + 1 
equations by Newton’s method. They found no singular behaviour a t  K = S/n. They 
also found several solutions for a given K by means of simple numerical analytic 
methods. 

A complete explanation of Wilton’s ripples is given by Chen & Saffman (1979, 
1980). They generalized Wilton’s approach by not restricting attention to one wave- 
length. In the same sense that Wilton’s ripples can be regarded as the result of a 
wave of length L interacting with another length L / N  ( N  2 2)’ Chen & Saffman have 
shown that other interactions are possible, with waves of length M L / N  ( M ,  N co- 
prime and M > N > 1 without loss of generality). They solved an integral equation 
for the wave profile as well as using a Fourier decomposition approach. They adopted 
a terminology for linear waves which we will use here. Waves with leading Fourier 
coefficient uN ( N  2 1) are said to be ‘of degree N ’ .  It is assumed that no other co- 
efficient is of the same or lower order. In fact, a, = O(an,/*) for n = p N ,  where p is a 
positive integer and a, = 0 otherwise for these waves. Waves with coefficients uN and 
a, of the same order are called ‘combination ( M ,  N )  ’ waves. Stokes’ waves are waves 
of degree 1 and Wilton’s ripples are combination ( M ,  1) waves. This is not exactly 
the same terminology as given by Chen and Saffman, who refer to pure waves of a 
certain degree. But the adjective pure has been used to describe waves whose propa- 
gation is governed by only gravity or capillary effects (as opposed to both effects at  
the same time). 

Following the known failure of the Stokes expansion at  the Wilton ripples (as 
improved by Schwartz), a modified version is offered here as an extension to the 
procedure of Pierson & Fife (1961). We concentrate on the combination (2, 1) waves 
at K = 8, although the method can be extended to include other waves at  other 
singularities. In  addition near-singular waves are also considered. We attempt to 
explore the regions unreached by the series expansion methods of 11, where con- 
vergence was non-existent, for example, at  K = 0.6 and the wave semi-height, h > 0.3. 
We are therefore only considering a particular branch of the solutions. 

It should be noted that the work of I1 on gravity-capillary waves does not contra- 
dict the conclusion of Chen & Saffman that the limit K+ 0 is singular for waves of a 
given degree. They do not show that a combination wave (or its finite-amplitude 
equivalent) is incapable of being continued to a pure gravity wave. We cannot, 
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however, completely exclude from our results the possibility of limit line behaviour, 
which may show up when coefficients of very high order are calculated. 

In what follows, knowledge of I and I1 is assumed. Section 2 contains an outline of 
the form of the perturbation solution to be used, as well as the set of recursive equa- 
tions obtained from Bernoulli’s equation. The expansions for the Fourier coefficients 
are then given as well as for wave properties both at  and near K = 4. The expansion 
for the pure waves of degree 2 at K = 4 are also given. In $31 we present results for 
wave profiles and properties of exact resonance and near-resonance combination (2, 1) 
waves. The breakdown of the Stokes ordering of the Fourier coefficients, viz. 
a, = O(ay), is graphically illustrated. This confirms the fact that Wilton’s ripples are 
only singular because of an assumption of the mathematics rather than some 
physical reason. The ‘physical’ explanation of resonance offered by Pierson and Fife 
is therefore only a guide to the deeper problem. We also show the limits of the use 
of Pad6 approximants and the extent of agreement with I and 11. 

A complete historical introduction to other works in this field is given in Hogan 
(19793). 

2. Method of solution 
A method is presented for analysing waves with K equal and very nearly equal to 4. 

Good agreement is found with the work of I1 and with other methods. Integral pro- 
perties are also discussed. 

(a)  The form of the perturbation 
Wilton’s re-examination of his own approximation procedure led him to the conclu- 
sion that, a t  K = 4, the leading Fourier coefficient was no longer the only term of its 
given order. In  fact, the second coefficient was now of equal order. He also showed 
that each successive pair of coefficients was of equal order and of order only one less 
than the previous pair. So instead of 

was a consistent ordering scheme. At the other singular values of K ,  he advocated 
still further ways of ordering the coefficients. With this rearrangement in mind for the 
case K = 4, we now propose a general expansion for the a, which reduces to that of 
Wilton. Define a mapping from R to Z+, int: a+n (so a is real and n integral) by 
n = the integral part of a, e.g. int (n) = 3, then let 

where e is a suitable expansion parameter. Immediately we note that ai = O(sint(a(i+l))), 
as obtained by Wilton. Now, it is clear that none of Q 2 of I1 is changed by assuming 
K = 4 and so we can use all the given equations of that section without any change. 
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We must adopt different expansions for the f,, qi, ui, w,, c2 and K ,  along similar lines 
to (2.1). In  fact we assume 

For K = 4, we need no additional expansion for the s, since equation II(2.9) tells us 
that s, = - wi for all i. But what happens in the case K + Q? We propose a modifica- 
tion, generalizing that used by Pierson & Fife (1961). We take 

i m  

K = f + Anen, 
n = l  

where the An are all real. This has no effect on the governing equations. The expansion 
for the si can then be computed from equations (2.5), (2.8) and II(2.9). We drop the 
hats from the kU, pLj,  ete., for simplicity. No confusion with I1 will arise by so doing. 
Then we substitute equations (2.1)-(2.8) into equations II(2.9)-(2.11) and compare 
coefficients of e. This can be made easier by considering the cases i (even) and i (odd) 
separately. In  addition, the following simplifications are useful (for I, n integers): 

int ( Q ( Z +  1)) = QZ+&[1- ( -  i)Z], (2.9) 

Odd, } (2.10) 
z +  *(n - 3), 

2int(&(Z+ l))+$(n-4),  neven, 

{:!;(::;+ 1)) + &(n - 4) - 1, n even. 

n odd, 

int ($(Z+ l ) )+int  (t(Z+n+ 1)) -2 = 

int (+(I+ 1)) +int (+(%-I+ 1)) - 2 = 

Eventually we arrive at  the following sets of equations 

a,, N odd, 

aN-l, N even 

N 
N.B. 2; an = a,+a,+a5+ ... + ( n=l 
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k-1 k-m 1 1 

m=l 1=1 (m + n) 
- C [&amIPn+m,k-m-l+l+- I Pm, k-m-Z+lI 

( n = 1 , 3  ,..., k = 1 , 2 ,  ...), (2 .13)  

k " l k  
& d k  = 1=1 x sl-l~n,k-Z+l-~~~m~latm~n-l,k-m+l 

n-11  k-1  k-1 

- x*- x almPn-I,k-m- 2 'tCn,k-I 1 m=1 1=1 

1 1 
t pm, k-m-t + am+n+l,IPm+l, k-m-l (m + + 1 

+---- 
(m + n) 

( n = 2 , 4  ,..., k =  1 , 2  )... ), (2 .14)  
Po1 = 1,  

(2 .15)  

(2 .19)  

11-2 1-m-1 

m=l j = l  
+ 2 Cct C [7mj7m+n,z-m-j +7m+1,j~m+n+1,z-m-jI 

(n = 2 , 4  ,..., 1 = 1,  2 ,  ...); (2 .20)  

j - 2  j-n-1 

n=l 1=1 
(2 .21)  

(2.22) 

* 
l ~ o j  = C* I: [nan,an,j-n-t+ (n+ 1)an+1,tan+1,j-n-~l (j = 1 ) 2 ,  .*.I ,  

j - 1  j -m 

m=l p=l  
pnj = nanj+ C (n+2m) 2 am+n,pam,j-m-p+l (n = 1 , 3  ,..., j = 1,2 ,... ), 

-m-I 



1 1 - 1  1-m 

+2 m = l p = l  I: C. [Cmp~n+m,I -m-p+l+  Cm+n,p~m,I-m-p+1I 

(2.25) 

(2.26) 

Here the summation is taken to be identically zero, if the lower limit exceeds the 
upper. Equation (2.12)isequivalent t o I I ( 3 . 2 ~ ) )  (2.13) and (2.14) to 11(3.26), (2.15) to 
II(3.2c))  (2.16) and (2.17) to I I (3 .2d) )  (2.18) to I I (3 .2e) )  (2.19) and (2.20) to II(3.2f), 
(2.21) to II(3.2g)) (2.22) and (2.23) to II(3.2h), (2.24) to II(3.2j))  (2.25) and (2.26) to 
II(3.2k).  Again, as in 11, $3, this set of equations is closed only when we define the 
parameter 8.  

(b) Correction and extension of Wilton’s work 

By letting E = a, and An = 0 for all n in equation (2.8), we can check Wilton’s ex- 
pansions for K = $. From (2.1) this means we must take 

all = 1)  aln = 0 (n  = 2,3,  ...) (2.27) 

and we find that, correct to the given order, 

u2 = 2 a, - &a; + O(a?), (2.28) 

a3 = T 9,2 4 1 - $&a3 8 l+O@:)’  (2.29) 

a 4  = 0 + o(a;), (2.30) 

a5 = -?;a:+ O(a!), (2.31) 

a 6 - - T”a3 4 0  l + o ( a t ) )  (2.32) 

c2 = 8 & $a1 -$la; + O ( U i ) )  (2.33) 

K = 8 * ju, - &a; + O(a?). (2.34) 

Equations (2.28)-(2.34) do not all agree with Wilton’s, even when due account is 
taken of notational changes. Equations (2.30)’ (2.31) (and consequently (2.33), 
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(2.34)) disagree. However, the fault lies in Wilton’s work, as can easily be seen by 
substituting his expressions (near the bottom of page 698) into his equation (9). The 
left-hand side is non-zero. With the equations (2.28)-(2.34) above, Wilton’s equation 
(9) is satisfied. In  addition, Wilton’s expressions for K and c2 can be shown to lead to 
negative values for the kinetic energy (use equation I1 (3.10)). The top (bottom) sign 
corresponds to the gravity- (capillary-) side solution obtained by Chen & Saffman. 
At this point we change slightly the terminology of Chen & Saffman. The terms 
‘gravity-side’ and ‘capillary-side’ tend to imply one sort of behaviour on one side 
of K = l / n  and another sort on the other side. This is not the case, as they have shown. 
We prefer the terms ‘gravity-like’ and ‘capillary-like’, as used by Rottman & Olfe. 
We shall see that these waves possess properties normally associated with pure 
gravity ( K  = 0 )  or pure capillary ( K  infinite) waves. 

But the choice of e = a, is not usually, as explained in 11, Q 3, the best possible. So 
to consider combination ( 2 , l )  gravity- and capillary-like waves we choose E = h, where 
h is the wave amplitude. From (2.1), this requires us to take the following 

a,, = 1, a,, = - 5 a2i-l,n-j+1 
j=2 (2j-1)  

(compare with I1 (3.6)). 

(2.35) 

This choice of E leads to the following expressions for a,, correct to the given order, 

(2.36) 
for K = 4: 

a, = h k ih2 +%h3 c g{&$%4 + O(h5), 

(2.37) 

(2.38) 

We note the continued absence of terms in h2, h3 in the expansion of a4, and attribute 
this to the higher ordering of a2. The missing term in h2 in K is due to the particular 
choice of E. Again, the top (bottom) sign refers to a gravity (capillary) type of solution. 
In addition, for K f 4 if we set A, = 0 for n 2 2, to simplify ideas, we find: 

al = h + ( $ A , k  (&+$A$)h2+O(h3),  (2.44) 

a2 = ($A, -t (1  +$A:)$) h + O(h2), (2.45) 

a3 = ( - * A  ,T (f++gA$)g) h2+O(h3), 

c2 = Q + ( Q A l ~ ( & + $ A : ) $ ) h + O ( h 2 ) ,  

K = $+(#A,+ (&+&A:)$h+O(h2). 

(2.46) 

(2.47) 

(2.48) 

It was not considered worth while to carry this hand calculation further, since it is a 
special case of equation (2.8). In addition, we state without proof that if a term of 
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0(1), say A,, is added to the right-hand side of equation (2.8), it can be shown that 
A ,  = 0, as we might expect since the perturbation is about K = 4. To order h, it is not 
possible to have aN = 0 ( N  = 1, ..., M -  l) ,  aM $. 0 ( M  > 1) in equations (2.44) and 
(2.45). Thus we have temporarily excluded waves of degree M ,  in the region of K = 4, 
from our formulation. 

Equations (2.12)-(2.26) and (2.35) are then programmed onto a computer as 
indicated in 11, $3, the algorithm being given in Hogan (19793). A quadruple pre- 
cision solution up to O(h42) takes approximately fourteen minutes to execute (as 
opposed to ten minutes in 11, $ 3) .  The lower order in this section is actually fictitious. 
In 11, the expansion was in h2;  here it is in h. 

Runs are made with both choices of sign, with no difference in execution time. It 
could be argued that it would be simpler to change the sign of each alternate term 
in one run in order to get the results for the next one (a simple matter in modern 
computer filing systems). It is, however, an additional test of the computer program 
that two runs should be made with the comparison done afterwards. The results agree 
exactly with those given in equations (2.36)-(2.48). 

( c )  Integral property expansions 

Now that we have theaij, etc., we can calculate the a,, etc., usingequations (2.1)-(2.7). 
We have the same general expressions for V,T ,  1, V ,  S,,, S,, and P as in 11, but the 
actual form of their expansions is different. In particular we now have 

(2.50) 

(2.51) 
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1 
m %+I, t-n-m+l 

]] hk. (2.52) 
1 

an+l,man+l, k-1-n-m+l 
n= l  m=l  

Equations (2.50)-(2.52) are to be compared with equations II(3.13)-(3.15). The 
general forms of the radiation stresses S,,, S,, and the energy flux F are not given 
(see equations I1 (3.16)-(3.18)). 

The following expressions are then obtained, for K = 4; 
T = +g~h2 g h 3  + +;h4 + 0(h5), (2.53) 

v = $%h2 gh3  + 4h4 + 0(h5), (2.54) 

(2.55) 

(2.56) 

s 22 = 1Zh2 1 6  + - 1 6  29h3 + $32 h4 + O(h5), 

s,, = 2 + 3 3  - + 3 4  + 0(h5), 

(2.57) 

From equations II(3.19)-(3.23), we would expect that 

T = V = #h2 and S,, = F / c  = Qh2, 

when K = 8. However, that is for a linear wave with profile y = h cos x. Here we have 
y = hcosxk &hcos2x, and so different first-order values for the integral properties 
must be expected. In  addition, we note that S,, (and hence the average Lagrangian 
9 = T - V )  is now O(h3),  whereas beforehand it was O(h4). S,, is also positive 
(negative) for the gravity- (capillary-) like solution. This is to be compared with the 
properties of S,  in 11, 5 3. There S,, 2 0 for K 5 +. 

Of course it is possible to obtain expansions of the integral properties for K + 4 
similar to equations (2.53)-(2.57) by using equations (2.49)-(2.52), etc. But for these 
near-resonance waves we shall show that the phase speed c and the wave profiles 
prove to be quite sufficient to gauge the behaviour of other quantities. 

We use equation (2.8) as follows: for a given value of K we choose the same number 
of non-zero An as the number of heights in which we are interested. So for example 
with N heights and K = K~ we set A ,  = 0 for n 2 N + 1, and equation (2.8) is evaluated 
N times to give N linear simultaneous equations in N unknowns (Al-AN). Then, 
using results analogous to equations (2.44)-(2.48), we calculate the required 
properties, at  each of the prescribed heights. Evaluation at  other values of h would 
mean that K =k K ~ ,  although the results would be just as valid. For example, take 
K = 0.4 and h = 0~01,0~05,0~1. Then A, = - 1-3 x 1 0 1 ,  A,  = 3.2 x 102, A, = - 2.0 x 103, 
and A,  = 0 (n 2 4) solves equation (2.8) for the given values of K and h. However, if 
h = 0*001, then K = 0.487318. This can place restrictions on t,he procedure. Never- 
theless, valuable results can still be obtained, as we shall see in § 3. 

With An = 0 for n 2 2, A, > O (  < 0 )  corresponds to the graphs K > & (  < 8) in 
figure 4 of Chen & Saffman (1979). Only the curved sections of these graphs can be 
reached when using equations (2.44) and (2.45). The region O B  is inaccessible, with 

O B  + +A,h. (2.58) 
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(d ) Waves of degree 2 or more 

The perturbation expansion, advocated in equations (2.1)-(2.7), can deal with waves 
of a given degree at K = 4. We must consider a degree of 2 or more, because waves of 
degree 1 have singularities a t  K = 4; see 11, equation (3.7). Let us take the degree to 
be 2 and then 8 = k a2 and a, = 0. So, from equation (2.1), we must set 

a2, = & 1, aLn = aln = 0 (m = 2,3, ..., n = 1, 2, ...). (2.59) 

Equations (2.12)-(2.26), together with equation (2.59), then give us: 

a, = 0, a2 = a2, (2.60) 

a3 = 0 + O(a;), (2.61) 

a4 = 0 + O(ui), (2.62) 

a5 = 0 + O(a$),  (2.63) 

a, = T &a: + O(a;), (2.64) 

c2 = 8 - $a; + O(a!), (2.65) 

K = g+&a2,+O(a;). (2.66) 

We expect the remaining coefficients of a3 and a5 to vanish. This is not the case for u4, 
where all = a42 = 0 independent of the value of a,, and ccZ1. Equations (2.60)-(2.66) 
represent waves of degree 2 at K = 4. The solution algorithm has to be slightly modified 
to deal with this case. See Hogan (1979b) for full details. Hence, our perturbation 
expansionis capable of dealing with waves of a given degree at  K = 4. 

3. Results for exact resonance ( K  = +) and near-resonance ( K  = +) waves 
We are now able to discuss the properties of (2, 1) combination waves which occur 

a t  and near K = a. One type comes from taking the upper sign in equations (2.44)- 
(2.48), the other one from the lower. Also we shall show that describing the former as 
gravity-like and the latter as capillary-like turns out, to be completely vindicated, a t  
least for small steepnesses. 

Generally it was found that the series (2.1)-(2.7) were very slowly convergent. 
Even Pad6 approximants proved unhelpful as 8 increased. The ratio of successive 
terms in each series behaved in an oscillatory manner which appeared to tend to a 
limit beyond h130. It proved impossible to obtain this number of terms owing to the 
size of the computational facilities available. In  fact, the author could not obtain all 
coefficients of h43. The size of these coefficients was not a limiting factor with those 
multiplying hl30 expected to be O( 1067). 

This situation is quite unlike that discussed in I1 where the ratio of successive 
coefficients monotonically approached a limit, which was the same for each series 
summed for a given value of K .  

The results in this section, therefore, should be interpreted with care near 
B = h = h,,,, with accuracy of only one decimal place assumed a t  h = h,,,. The 
profiles and properties of the waves are not affected qualitatively. 
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FIGURE 1. Wave profiles, in the case K = 0.3, fork = 0.03, 0.07, 0.11, 0.15. 
The still water line is included for reference. 

I I I I I 
L__l 0.1 5 

I I I I I I 1-0.1 5 
t n  R 

FIGURE 2. Wave profiles, in the case K = 0.4, for h = 0.02, 0.05, 0.08, 0.11. 
The still water line is included for reference. 

(a )  Wave profiles 
With the aij already found in $2, we can construct a set of ai for the required values 
of h, using equation (2.1) and E = h. Other coefficients we will use are Si, yi and T ~ ~ -  

similar to those used in 11. We can draw wave profiles and calculate integral pro- 
perties with these coefficients. In  the case of capillary-like combination ( 2 ,  1) waves a t  
K = $, we will compare results with the values K = 0.6, 0.8 as described in 11. For the 
gravity-like waves, comparison is made with K = 0.3, 0.4, again computed as in 11. 
A wave with K = 0-8 looks very similar to one with K = 1.0, as shown in 11, figure 13, 
and its properties have been fully detailed in 11, table 5 .  The same is not true for 
K = 0-6. As we have already remarked in $1, convergence could not be obtained for 
h 2 0.3, owing to the proximity of K to 4. The profiles which could be drawn were 
very similar to K = 1.0, except that a dip developed in the crest for h > 0.2, approxi- 
mately. The wave properties are presented in this section. For K = 0.3, 0.4 the half- 
wavelength profiles obtained by this method are shown in figures 1 and 2 respectively. 
When K = 0.3, we note the appearance of two extra troughs (over one wavelength) 
as h increases (for h 0.13). But, when K = 0.4, one extra crest appears in the trough 
(for h z 0.05). Nothing exceptional happens at the crests of either set of waves. I n  
each case it is tempting to believe that eventually the highest wave may be trough 
limited (i.e. a bubble may form). From the work of other authors this seems to be the 
case. In  fact, each wave is both capillary- and gravity-like (see later). We shall retain 
the term gravity-like for simplicity. It should be noted that K = 0.4 is almost midway 
between K = Q and K = + singularities and K = 0.3 is similarly situated between 
K = 1 3 and K = t singularities. Chen & Saffman (1980) give profiles of (2, I)  combination 
waves for K = 0.3, in their figure 3. The wave is very much like Crapper’s pure capillary 
wave, with the highest enclosing a bubble of air and h,,, = 0.4305. The waves in 
figures 1 and 2 are pure waves of degree 1, for small amplitudes. 

For the near-resonance waves we consider five cases in detail, using equation (2.8). 
They are A, = ki&, A ,  = i 1 and A ,  = 4 with A ,  = 0 (n 2 2 )  in each case. The 
first two values of A,  are used to determine the behaviour of the wave near K = 4 and 
the last three values are used as a check on the accuracy of the method. 

Let us consider the lower sign results of equations (2.44)-(2.48) together with 
A, = ++i5, exact resonance (A,  = 0) and A ,  = -A5. The wave profile results are 
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FIGURE 4. Capillary-like wave profiles, in the case K = 0.5, for h = 0.05, 0.15, 0.5450. 

given in figures 3-5. Each highest wave is capillary-like, with a bubble enclosed in 
the trough. Note the dip in the crest, as in the case K = 0.6. For clarity of presentation, 
other wave heights have been omitted. Nevertheless, the crest height of the wave 
above the mean level is still a non-monotonic function of the wave height as we found 
in I, figure 4, for K infinite and I1 for K 2 0.8. The values of la,,, in each case are given 
in table 1, together with other values of A,. It can be seen that these values fit in well 
with the known values for K = 0-8, 1.0 (11, table 1). However, as ]All increases, the 
accuracy is expected to become impaired. A,, A,,  etc., should be used to get a better 
‘fit’ further away from K = 4. The value of h,,, at K = t is slightly lower than 
Schwartz & Vanden-Broeck (1979) obtained in their study of the problem, because 
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K 

0.35 
0.38 
0.40 
0.42 
0.45 
0.47 
0.49 
0.50 
0.51 
0.54 
0.56 
0-60 
0-62 
0.66 
0.72 

hmax 

0.45 
0.47 
0.48 
0.49 
0.51 
0.52 
0.54 
0.55 
0.55 
0.57 
0.58 
0.60 
0.62 
0.64 
0.67 

A1 

- 0.3333 - 0.2500 
- 0.2000 
-0.1666 
- 0*1000 
- 0.0633 
- 0.0200 

0 
0*0200 
0.0633 
0*1000 
0.1666 
0.2000 
0.2500 
0.3333 

TABLE 1. Highest capillary-like waves for K + 4, for various values of 
A,; A ,  = 0 (n 3 2). 

0.3 

0 

-0.4 o'::r 0 t. -0.4 

FIGURE 6. Gravity-like wave profiles, in the case K = 0.5, for h = 0.05, 0.10, 0.15, 0.20. 

of the small number of terms used here. Rottman & Olfe (1979) did not obtain a highest 
capillary-like wave a t  K = 4, because their method is unable to describe waves with 
vertical tangents. Schwartz & Vanden-Broeck obtain h,,, = 0.622 for K = 0.6. Our 
estimate is nearer 0.6, although it may change as other coefficients A, are included. 
It should be noted that figures 3 and 5 actually depict three values of K each, whereas 
figure 4 is only for K = 4. So for example in figure 3, when h = 0-1, K = 0.501 and not 
K = 0.502 or 0.505 484. However, this merely reinforces the continuity of the solution 
a t  K = Q. 

The upper sign results of equations (2.44)-(2.48) are now considered, taking the 
cases A ,  = +&, exact resonance and A ,  = --&. Only the result for A ,  = 0 is 
given, in figure 6. The other profiles are almost exactly the same. Here, as in figure 2 ,  
convergence could not be obtained above a certain height (0.2 in the present case). 
Hence the highest wave in the gravity-like cases is still unknown. Schwartz & Vanden- 
Broeck produce wave profiles a t  K = g, which are very similar to our figures 4 and 6 
(their figures 4 and 5 ) .  Their 'wave of type 1 (2) ' corresponds to our capillary- (gravity-) 
like solutions. Their gravity-like profile is higher than ours, although it is still not 
limited by a bubble in the trough. The same is true of the gravity-like wave a t  K = 3 
drawn by Rottman & Olfe. Thus, even now, the exact shape of this highest wave is 
unknown. Chen & Saffman do not give profiles for waves with K = 4. 

With these results (figures 3-6) we see the possibility of two waves existing a t  
wavelengths other than K = 4. Some authors have neglected the gravity-like solution 
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e Capillary-like .- 

Gravity-like 
FIGURE 7. Validity regions for both capillary- and gravity-like solutions for both methods of 
computation. x , highest wave calculated; +, region of solutions with a, expansion as used in 
11; 4 , region of solutions with K - = hA, and present a ,  expansion; @, overlap region. 

with K > 8 ,  together with the capillary-like solution with K < 8, for reasons which 
do not seem obvious. But we can now see that both sorts of waves are sensible on 
both sides of K = 4, and no sound argument (based on stability or whatever) exists, a t  
the moment, for rejecting any solution. 

Wilton (1915) drew only two profiles for K = 4, corresponding to  our figures 4 and A 
(his figures 4 b  and 4a respectively). Despite his algebraic errors and some conver- 
gence difficulties (partly overcome here by use of Pad6 approximants), he still found 
the crest in the trough of the gravity-like solution (at h = 0-06) and the dip in the 
crest of the capillary-like solution (at  h = 0-083). However, he was not certain of the 
latter phenomenon and found no hint of a bubble in the capillary-like solution. 
Pierson & Fife (1961) have given profiles of waves a t  K = $, in their figure 5 .  The 
profiles are similar to ours, except their gravity-like profile has a dip in its crest and 
their capillary-like profile has a dip just before the crest. I n  addition, they do not find 
a highest wave profile for the capillary-like solution. Pierson (1977, private com- 
munication), amongst others, has indicated that some of the expressions, used to 
draw the profiles, contain algebraic errors. Consequently, no significance can be 
attached to the difference we have found. Nayfeh (1970) is the only other author with 
whom comparison is possible. The top and middle curves of his figure 3 are very 
similar to  those of Pierson & Fife, and different from our figures 4 and 6. Also, Nayfeh’s 
expressions for the wave profile differ only slightly from those of Pierson & Fife. 
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n 
FIGURE 8. Three capillary-like waves, drawn by both methods, taken in the first quadrant of 

figure 7 with A ,  = 1. Vertical scaling exaggerated. 

Consequently, they are suspect also, Wilton, Pierson & Fife and Nayfeh do not give 
near-resonant profiles. 

( b )  Validity regions and comparison of expansions 

As we have already mentioned, solutions exist on both sides of K = Q for both types 
of wave. I n  addition, we have solutions from I1 which are valid away from K = $. I n  
the latter case, the radius of convergence is sometimes less than and sometimes 
greater than the highest wave for capillary-like solutions. We have taken the radius 
of convergence to represent the highest wave for gravity-like solutions. The regions 
of validity are summarized in figure 7 ,  in schematic form. 

By simply taking more terms in equation (2.8) we are able to extend the validity 
region of the ‘new’ a, expansion. Also we note that there are two overlap regions in 
which both methods produce solutions, and which should agree, since they represent 
the same wave. We now compare six waves, using three values of A,  (with A,  = 0, 

I n  figure 8, with A,  = 1, we have superimposed three waves [ ( K ,  h)  = (1.0,0.5), 
(0.8,0.3),  (0.6, 0.1)] obtained by one method, on top of the same three waves drawn 

n 2 2). 
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FIGURE 9. One gravity-like wave, drawn by both methods, taken in the third quadrant 
of figure 7 with A ,  = - 1. Vertical scaling exaggerated. 

by the other, Even with the vertical scale enlarged to emphasize differences, only 
three profiles can be seen. In figure 9, A,  = - 1, and one wave [ ( K ,  h) = (0.4,0*1)] is 
drawn by the two methods. Again, there is no noticeable difference. Those values 
of A,  ( 1) give profiles from both the overlap regions (A,  = 1 in the first quadrant, 
A ,  = - 1 in the third). The agreement is striking and represents a powerful endorse- 
ment of both methods of calculation. The higher waves, for a given K, are not so well 
represented, as we see in figure 10. Here A,  = 8 and we are in the first quadrant. Four 
profiles are drawn; two each by the different methods for ( ~ , h )  = (0-6,0.2) and 
(0.8,O.g). The agreement is worst at the crest and trough for both sets of (K, h). How- 
ever, since h,,, = 0.7243 for K = 0*8(II, table l), it is better than could be expected 
from a one-term approximation so near to  the highest wave. The dip in the crest a t  
(K, h) = (0.6,0.2) is just discernible. It is clear that taking more terms in equation 
(2.8) is likely t o  reproduce the highest wave for both values of K .  The crest and trough 
y co-ordinates of the twelve profiles of the six waves given in figures 8-10 are pre- 
sented in table 2. 

Also, we can compare the phase speeds, using equations (2.47) and II(3.7g). We 
will give a fuller description of this property soon, but the comparison seems fitting 
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FIGURE 10. Two capillary-like waves, drawn by both methods, taken in 
of figure 7 with A ,  = +. Vertical scaling exaggerated. 

the first quadrant 

K h Crest y co-ord. Crest y co-ord. Trough y co-ord. Trough y co-ord. 
(using method (present method) (using method (present method) 

of 11) of 11) 

Figure 8 

1.0 0.5 0.415 569 0.416 029 - 0.584 523 - 0.583 947 
0.8 0.3 0.236 8 15 0.236 709 - 0.363 180 - 0.363 284 
0.6 0.1 0-074 9 16 0-074 910 -0.125082 - 0.125088 

Figure 9 

0.4 0.1 0.129693 0.129687 - 0.703070 - 0’703370 

Figure 10 
0-8 0.6 0.444225 0.439341 - 0.757325 - 0.759911 
0.6 0.2 0.133 846 0.133 782 - 0.265 946 -0.266216 

TABLE 2. The crest and trough y co-ordinates of waves drawn in figures 8-10, using both 
methods of computation. N.R. Those co-ordinates are mot all relative to tho same mean level. 



398 S .  J .  Hogan 

K h c2 c2 

(equation I1 (3.7g)) (equation (2.47)) 
Figure 8 

1.0 0.5 1.667 592 1.666 525 
0.8 0.3 1.636259 1.635 961 
0.6 0.1 1.554505 1.554499 

Figure 9 

0.4 0.1 1.416989 1.416 948 

Figure 10 
0.8 0.6 1.161 923 1,162 060 
0.6 0.2 1.463 097 1.462 779 

TABLE 3. The square of the phase speed c of waves drawn in figures 8-10, using both methods of 
computation. N.B. The scaling is such that g = 1 

o l  I I I I I I I I I I I 1 1 1 

0 0.4 h 0.7 
0,7243 

FIGURE 1 1 .  The ratio of the squared phase speed, c2, to that of infinitesimal waves, ci ,  plotted 
against h for K = 0.5 (capillary-like), 0.6, 0.8. Schwartz dt Vanden-Broeck's results for K = 0.5 
( x ) and 0.6 (@I). 

now. In table 3, phase speeds are given for the waves drawn in figures 8-10, using the 
two different methods. The agreement is excellent overall, although the smaller 
hlh,,, and, the nearer K is to 4, the better the agreement. This is also evident in 
table 2. 

Before going on to discuss wave properties in greater detail, i t  is of interest to find 
out the results of the perturbation scheme (equation (2.8)),  applied as far out as 
K = 0.3. This is of course on the far side of another singularity a t  K = 4 and any 
agreement must be regarded with scepticism. Nevertheless, some agreement was 
found with the Fourier coefficients a, and the phase speed c. For K = 0.3 and h = 0.1, 
the methods of this paper produced, with A ,  = - 2, c2 = 1.325 and a, = 0.0908.' 
Using the methods of 11, c2 = 1.325 18 and a, = 0.09085. Equation (2.8) applied at 
K = Q was not attempted. A full perturbation scheme based around K = + would be 
preferable, but this has not been undertaken. 
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0 0.4 0.7 
0.7243 h 

FIGURE 12. The kinetic energy, T, plotted against h for K = 0.5 (capillarj -like), 
0.8, 0.8. The scaling is such that T = 1. 

(c) Wave integral properties 

We now consider integral properties of exact and near-resonance waves, both 
capillary- and gravity-like, and compare them with values of K ,  dealt with in I1 and 
by other authors. So, K = 4 (capillary-like, profiles in figure 4) is compared with 
K = 0.6, 0-8 whilst K = 4 (gravity-like, profiles in figure 6) is compared with K = 0.3, 
0.4. The results are given in the appendix. We note that the scaling is always such 
that r = 1.  

For capillary-like waves, figure 1 I shows the ratio c2/cE, where co is the phase speed 
of infinitesimal waves, plotted against the wave semi-height h. This immediately 
reminds us of figure 14 of 11, and shows the decrease in phase speed with increasing 
wave height characteristic of capillary waves. The curve for K = 0.5 is different in 
two ways. For small h, it moves away from I more rapidly than the other curves, 
owing to  the presence of a term in h in c2 (equation 2.42). The rapid rate of decrease 
of c2/c$ as h-th,,, is probably due to the small number of terms used. Schwartz & 
Vanden-Broeck’s results are included. 
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FIGURE 13. The potential energy, V ,  plotted against h for K = 0.5 (capillary-like), 
0.6, 0.8. The scaling is such that T = 1. 

Figure 12 shows the kinetic energy of the capillary-like waves under consideration. 
A clear maximum is visible for K = 0.5, far short of h = h,,,. Such a maximum is also 
present in the curve K = 0.8. One would expect a maximum also for K = 0-6. Figure 13 
shows the total potential energy of the same waves. Here we begin to see clear evidence 
of the special nature of these singular waves. The curve K = 0.5 has a more rapid 
increase with h as h-t h,,,. This special nature is even more evident in figure 14: a 
graph of the gravitational potential energy V,  versus h. I n  11, figure 17, it is clear that  
the maximum value of V,  is reduced as K decreases from 1, after the initial increase 
from zero at K infinite. Here this behaviour is confirmed. So much so that the scaled 
maximum value of V, for K = 0.5 is about the same as it is for K = 5.0. This has a 
corresponding effect of a greater increase in V,, the surface potential energy, which is 
explained by the dip in the crest of all the waves with K = 0.5 (capillary-like, figure 4 ) .  
The last capillary wave integral property a t  which we will look is the excess flux of 
z momentum in the z direction, or radiation stress Szz: shown in figure 15, correspond- 
ing to 11, figure 19. Again, we can see the change in trend of values of s,, a t  the maxima 
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h 0.7243 

FIGURE 14. That part of the potential energy due to gravity, V,, plotted against h 
for K = 0.5 (capillary like), 0.6, 0-8. The scaling is such that 7 = 1 .  

as K = 0.5 is approached, with K = 1.0 having approximately the same value as 
K = 0.5. And the trend in K = 0.6 is fairly predictable. Note that 8, is always negative, 
another characteristic of these capillary waves. The integral properties 1, F and S,, 
are not shown because they can easily be obtained from the tables by use of the known 
formulae given in I .  I is given by equation 1(2.22), S,, by I(2.23) and F by I(2.24). 
To find S,,, V ,  must first be calculated. This can be avoided by using equation II(3.18) 
for Szz. For then 

or using equation I(2.24) 
S,, = 3T-2%+SS,, (3.1) 

s,, = F/c+S,,, (3.2) 

and both of these equations use results given in the tables. Even without these results, 
it is clear that one of the waves at  K = 0.5 is capillary-like in its character, with the 
highest wave enclosing a bubble of air. All the waves possess properties consistent 
with capillary waves. It is also evident that there is a smooth transition of wave 
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FIGURE 15. The radiation stress, S,,, plotted against h, for K = 0.5 (capillary like), 
0.6, 0.8. The scaling is such that T = 1.  

properties, as this singularity is approached from shorter wavelengths. The nature of 
this transition is not, however, monotonic. 

Now gravity-like waves: these waves are both capillary- and gravity-like, depend- 
ing on their height. This is clearly seen in figure 16. Initially the curves of c2/ci for 
each value of K increase with h, as if they were gravity waves (compare with figure 3 
of 11). Then, a t  around h = 0.09 for K = 0.4, h = 0.12 forK = 0.5, the waves move more 
slowly as they get higher, thus behaving as capillary waves from then onwards 
(compare with figure 11 and figure 14 of 11). In fact, the highest wave we have shown 
for K = 0.5 is slower than even the waves of infinitesimal height. We would expect this 
trend to continue if we could draw higher waves. The curve for K = 0.3 shows signs of 
turning a t  about h = 0- 18. If this were so, then there exists a definite lag between the 
appearance of additional troughs and crests in the wave profile, and an overturn in 
the phase speed curve. 

Figures 17 and 18 show the kinetic and potential energies respectively of these 
gravity-like waves. The curves are remarkably similar a t  first glance, quite in keeping 
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FIGURE 17. The kinetic energy, T, plotted against h for I( = 0.3, 0.4, 0.5 
(gravity-like). The scaling is such that 7 = 1. 
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FIGURE 18. The potential energy, V ,  plotted against h for K = 0.3, 0.4, 0.5 
(gravity-like). The scaling is such that T = 1. 

with gravity waves (11, figures 4 and 5)  and rather unlike capillary waves (see figures 
12 and 13). Of the two waves a t  K = 0.5, we can now see that the capillary-like one is 
less energetic for a given height (by a factor of 3 or so). It is therefore likely to be the 
more stable one, although no rigorous proof of this is given here. I n  figure 19 we show 
the gravitational potential energy. The maxima present in figure 14, and figure 17 of 
11, are no longer evident, which implies that  the waves are no longer totally capillary- 
like. As the waves become more capillary-like with height, maxima appear (see 
Schwartz & Vanden-Broeck). 

I n  figure 20, the radiation stress S,, is drawn. The increase with h is characteristic 
of gravity waves (11, figure 8), whereas the decrease with h is more like the behaviour 
of capillary waves (11, figure 19). The turning points (possible for K = 0.3) occur a t  
approximately the same points as for c2/c; in figure 16. 

The non-monotonic variation of the integral properties with K is deceptive. Steady 
waves of degree 1 are drawn for K = 0.3 and 0-4; combination ( 2 , l )  waves for 
K = 0.5. 
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0 0.1 0.2 

FIGURE 19. That part of the potential energy due to gravity, V', plotted against k 
for K = 0.3, 0.4, 0.5 (gravity-like). The scaling is such that 7 = 1. 

h 

Overall it is clear that these waves a t  K = 0.5 can exhibit both gravity- and capillary- 
like behaviour depending on their height. There is no great jump in wave properties 
as this wave is approached from longer wavelengths. 

which do not 
agree with ours for all h. Our work has the shortcoming of requiring many more terms 
than computing facilities would allow. Comparison with their work is difficult owing 
to lack of tables, but we feel that three-figure accuracy has been obtained up to 
around h = 0.45 for capillary-like waves and four figure for h = 0.20 for gravity-like 
waves, Convergence was obtained in all cases. Our result for c for capillary-like waves 
a t  h = h,,, is about 15 % smaller. Nevertheless, qualitatively we obtain similar 
results. 

Comparison with the work of Rottman & Olfe (1979) is also qualitatively good, 
but again no tables are given. We note that figure 2 of that work was given, along 
with exact analytic results, in an earlier paper by the present author (Hogan 
1979 a) .  

Schwartz & Vanden-Broeck (1979) give results for waves at K = 
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FIGURE 20. The radiation stress, S,,, plotted against h for K = 0.3, 0.4, 0.5 
(gravity-like). The scaling is such that T = 1. 

h 

Chen & SafTman (1979) do not give results for waves at  or near K = 4. Nayfeh’s 
(1970) equation (4 .16b)  requires a factor of ak, (his notation) to be added to the right- 
hand side. His method is a special case of ours, with A ,  = a42,  A ,  = 0 (n  > 2 ) .  

To conclude this section we consider properties of gravity-like waves with K > 0.5 
and capillary-like waves with K < 0-5. We have shown that the wave profile of a 
particular type does not vary greatly as the singularity is passed from either side. 
We can therefore expect the same behaviour from the integral properties (not just 
from one side as we have already shown). In particular, we limit ourselves to the 
phase speed c. In table 4, c2 for capillary-like waves with K + 4 is given for five wave 
heights. Comparison at  h = h,,, is not useful. Here we can easily see a steady transi- 
tion acro~s  the singularity, as indicated in the wave profiles, for a given value of h. 
In table 5 we see the same is true for gravity-like waves, a t  the four heights we have 
been able to draw. 

In  other words, if a capillary-like wave changes its length so as to encounter the 
first of Wilton’s singularities, it need not suffer any great change in character. In fact, 
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h c2 for 
A -1- 

(figure 3) 
1 - 100 

0.10 1.4139 
0.20 1.3058 
0-30 1.1711 
0.40 0.990 
0.50 0.72 

ca for 
Al = 0 

(figure 4) 

1.4123 
1.3023 
1.1653 
0.981 
0.70 

ca for 
A ,  =-A 100 

(figure 5 )  
1.4107 
1-2988 
1.1595 
0.972 
0.69 

TABLE 4. The square of the phase speed c for capillary-like waves with K = +, 
as given in figures 3-5. N.B. The scaling is such that g = 1. 

h ca for cs for ca for 

0.05 1.5339 1.5332 1.5325 
0-10 1.5558 1.5544 1.5530 
0.15 1.5550 1-5527 1.5505 
0.20 1.4889 1.4828 1.4787 

TABLE 5 .  The square of the phase speed c for gravity-like waves with K = t .  
N.B. The scaling is such that g = 1. 

A ,  = -2- A ,  = 0 100 
A --L. 

1 - 100 

it can undergo a smooth transition, still preserving its capillary-like nature. The same 
is also true for gravity-like waves. 

Finally we note that the doubling of wavelength for near-resonance gravity- and 
capillary-like waves observed by Rottman & Olfe is none other than the bifurcation 
of waves of degree 2 and length h into combination waves of length 2 4  as given by 
Chen & Saffman (1979, equation (4.3)). 

4. Discussion 
This paper concludes the present study of steady gravity-capillary waves con- 

ducted by the author. Wilton’s ripples have been considered in a similar manner to  
Pierson & Fife (1961). Full agreement has been found with the traditional approach, 
as given in 11. Wave properties are given in graphical and numerical form for some of 
the waves a t  K = +. The other types of wave known to exist a t  this point can easily be 
considered by suitable modifications of the basic method. The reason for the appear- 
ance of these singularities is the assumption of ordering in the Fourier coefficients, 
which does not remain consistent throughout the entire gravity-capillary range. 
This has been summarized in figure 7, clearly illustrating the inability of waves of 
degree 1 to traverse this range with a non-zero amplitude, as shown by Chen & 
Saffman. 

The limitations of this approach, that  is, using Pad6 approximants, are illustrated 
in figure 6. No profiles of a highest wave were obtainable for the ( 2 , l )  combination 
waves a t  K = 4. This is also true of other work, but the present approach seems more 
restricted. A computer with more store would be able to produce higher waves. With 
that reservation, Pad6 approximants have produced results in agreement with other 
approaches with a more sound analytical background. 
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The vast accumulation of theoretical data presented on this subject to date now 
deserves some experimental attention. The fact that  identical conclusions were 
reached by different methods is not sufficient evidence, in itself, to justify the belief 
that the real world has been successfully mirrored. A possible experimental procedure, 
together with some of the expected results, is contained in a brief report by the present 
author (Hogan 1980b). The idea is an old one, based on the fishing-line problem. The 
theoretical results for the energy flux relative to the ‘line’ indicate marked changes 
with increasing amplitude, which may be seen in the laboratory, despite viscous 
damping, cross currents or other effects. 

The solution procedure given in these three parts have been shown to be capable of 
reproducing results obtained by more sophisticated techniques. I n  particular there 
is no inherent drawback in the perturbation scheme we have presented which prevents 
waves of a given degree from being included. Other combination waves can also be 
considered. An expansion suitable for combination ( 3 , l )  waves a t  K = 5 is 

This work does not attempt to  be an exhaustive study of the effects of surface 
tension on steep water waves. With the exception of I, $2, all the results apply to 
waves on water of infinite depth. The case of uniform finite depth can be considered 
in a straightforward manner, although the presence of the ‘ripple tank’ depth should 
give the problem added interest. At lower depths the dispersion relation is no longer 
double-valued in the wavenumber and so no ‘resonance’ is possible. Barakat & 
Houston (1968) were the first to show that the singular behaviour of the Stokes 
expansion no longer occurred a t  these depths. Similarly solitary waves have not been 
considered. 

We have found that great care indeed has to be taken with convergence criteria 
when using Pad6 approximants. The series in equations (2.1)-(2.7) converge very 
slowly, even when accelerated. So much so that a limit appears to have been reached 
when in fact i t  has not, as highlighted in figure 11. 

The case of standing gravity-capillary waves has been considered only by Concus 
(1962, 1964). There appears to be no simple standing equivalent to Crapper’s (1957) 
solution for pure capillary waves. 

I would like to thank Professor M. S. Longuet-Higgins for suggesting this problem 
to me and the Natural Environment Research Council for financial support while this 
work was being carried out. This manuscript was prepared when the author was 
supported by grants from the Office of Naval Research and the Fulbright Scholarship 
Program of the Council for International Exchange of Scholars a t  California Institute 
of Technology, Pasadena. 
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Appendix 

h 

0 
0.022 5 
0.045 0 
0.067 5 
0.0900 
0.1125 
0.1350 
0.1425 
0.1470 
0.1477 
0.1485 
0.1492 
0.1500 

C 

2.081 6660 
2.082761 3 
2.0861733 
2.091 7358 
2.098 582 2 
2.1055303 
2.111 4469 
2.1 13 018 7 
2.113 842 6 
2.1 13 970 7 
2.1 14 096 0 
2.1 14 21 8 7 
2.114338 5 

T 
0 
0.53981 x 
0.209 27 x 
0.461 53 x 
0,821 68 x 
0.13096 x lo-' 
0.19497 x lo-' 
0.220 20 x 10-1 
0.236 36 x 10-l 
0.239 13 x 10-I- 
0.241 92 x lo-' 
0.244 73 x lo-' 
0.247 57 x lo-' 

V 
0 
0.53953 x 
0.20881 x 
0.459 29 x 
0.81529 x lo-* 
0.12962 x lo-' 
0.192 74 x lo-' 
0.21766 x lo-' 
0.23364 x lo-' 
0.23638 x 10-I- 
0,239 14 x lo-' 
0.241 93 x 10-1 
0,24474 x lo-' 

v, 
0 
0.41456 x 
0.15963 x 
0.347 52 x lo-' 
0.60827 x 
0.95097 x lo-' 
0.13848 x lo-' 
0.15509 x lo-' 
0.16559 x lo-' 
0.167 38 x lo-' 
0.169 18 x lo-' 
0 . 1 7 1 0 0 ~  10-l 
0.17282 x lo-' 

8 2 ,  

0 
0.287 04 x 
0.462 60 x lo-' 
0.22407 x 
0.638 96 x 
0,13338 x lo- '  
0.22326 x lo-' 
0.25407 x lo-' 
0.271 83 x 
0.27471 x lo-' 
0.27755 x lo- '  
0.280 37 x 
0.283 16 x 

TABLE 6. Properties of the steady wave of degree 1 at K = 0.3, as a function 
of the wave semi-height h. The scaling is such that T = 1 

h 

0 
0.0165 
0.033 0 
0.049 5 
0.0660 
0.082 5 
0.099 0 
0.1045 
0.107 8 
0.1083 
0.1089 
0.1094 
0.1100 

C 

1.870828 7 
1.8717895 
1.8743433 
1.877 7040 
1.880916 1 
1.882 895 7 
1.882 299 8 
1.881 252 1 
1.8803734 
1.880 207 5 
1.8800359 
1.879 858 5 
1.8796753 

T 
0 
0.242 88 x 
0.10258 x 
0.25076 x 
0.497 11 x 
0,891 16 x lo-' 
0.151 85 x lo-' 
0.18008 x 10-1 
0.199 16 x lo-' 
0.20251 x 10-l 
0.205 90 x 10-I- 
0.209 35 x 10-I- 
0.212 85 x lo-' 

V 
0 
0.24276 x loe3 
0.10240 x lo- '  
0.24997 x 
0.49509 x 
0.887 77 x lo-' 
0.151 61 x lo-' 
0.18002 x lo-' 
0.19928 x 10-I- 
0.202 66 x 10-I- 
0.206 09 x lo- '  
0.209 58 x 10-l 
0.21312 x lo-' 

VLJ 8 2 ,  

0 0 
0.17292 x lo-' 0.12260 x 
0.72405 x 0.180 18 x 
0.17479 x 0.79325 x 
0.34081 x 0.202 33 x 
0.59691 x 0.33872 x 
0.98376 x 0.24536 x 
0.11506 x lo-' 0.597 17 x 
0 . 1 2 6 1 3 ~  lo-' - 0 . 1 1 7 6 3 ~  
0.12805 x 10-1 - 0.15306 x 
0 . 1 3 0 0 0 ~  lo-' - 0 . 1 9 0 3 3 ~  i O - 4  
0.131 97 x lo-' - 0.22950 x 
0.13397 x 10-I- - 0 . 2 7 0 6 4 ~  

TABLE 7. Properties of the steady wave of degree 1 at K = 0.4, as a function of 
the wave semi-height h. The scaling is such t h a t  T = 1 

h 

0 
0.0300 
0.0600 
0.0900 
0.1200 
0.1500 
0.1800 
0.1900 
0.1960 
0.1970 
0.1980 
0.1990 
0.2000 

C 

1.7320508 
1.7441584 
1.754207 8 
1.761 5262 
1.764 935 9 
1.762 242 5 
1.718236 
1.73844 
1.7300 
1.7284 
1.7266 
1.7247 
1.7227 

T 
0 
0.107 52 x 
0.462 56 x 
0.11387 x lo-' 
0.22654 x 10-1 
0.408 17 x 10-1 
0.71070 x 10-1 
0.8615 x 1O-I- 
0.974 x lo-' 
0.995 x 10-I- 
0.102 
0.104 
0.106 

V 
0 
0.10705 x lo-' 
0.459 16 x 
0.1129ox 10-1 
0.22499 x 10-l 
0.407 71 x lo-' 
0.71868 x lo-' 
0.8768 x 10- l  
0.996 x lo-' 
0.102 
0.104 
0.107 
0.109 

v, s z z  

0 0 
0.60292 x 0.471 88 x 
0.26064 x l o w 2  0.34026 x 10-4 
0.640 59 x 0.960 58 x 
0.12603 x lo-' 0.15451 x lo- '  
0.221 33 x 10-I- 0.45944 x 
0'36622 x lo-' -0'79743 x lop3 
0.4316 x 10-l -0 '1531 x lo- '  
0.477 x lo-' -0.221 x lo-' 
0.486 x LO-' -0.234 x 
0.494 x lo-' -0.249 x lo- '  
0.503 x 10-1 -0.265 x 
0.512 x 10-I- -0.281 x lo- '  

TABLE 8. Properties of'the steady combination (2, 1) gravity-like wave at K = 4, 
as a function of the wave semi-height h. The scaling is such that T = 1 
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h 

0 
0.081 7 
0.1635 
0.2452 
0.327 0 
0.408 7 
0.4905 
0.5177 
0.545 0 

G 

1.732 0508 
1,691 1555 
1.6401780 
1.5776112 
1.497 702 6 
1.386733 
1.212 
1.126 
1 

T 
0 
0-664 22 x 
0.241 82 x 10-1 
0.50021 x lo-' 
0.81494 x lo-' 
0.1 14 11 
0.1363 
0.1363 
0.1 

V 

0 
0.67583 x 
0.251 98 x lo-' 
0.537 44 x 10-1 
0.91 195 x lo-' 
0.13605 
0.1873 
0.207 8 
0.2 

v, s z z  

0 0 
0 . 3 5 4 8 9 ~  - 0 . 1 1 6 0 5 ~  
0.12248 x lo-' - 0.101 60 x lo-' 
0.236 14 x lo-' - 0.372 32 x lo-' 
0.34900 x lo-' - 0'970 17 x lo-' 
0.42323 x lo-' -0.21934 x lo-' 
0.4029 x lo-' -0.50951 x lo-' 
0.3617 x lo-' -0.71448 x lo-' 
0.3 x lo-' -0.1 

TABLE 9. Properties of the steady combination (2, 1) capillary-like wave at K = 21. 
as a function of the wave semi-height h. The scaling is such that T = 1 

h 

0 
0.045 0 
0.090 0 
0.1350 
0.1800 
0.2250 
0.2700 
0.2850 
0.2940 
0.2955 
0.297 0 
0.298 5 
0.3000 

C 

1.6329932 
1.627 377 6 
1.6134398 
1.5946494 
1.572 422 8 
1.547 1734 
1.5188858 
1.508741 5 
1.5024735 
1.501 41 5 2 
1.500 353 0 
1-499 286 9 
1.4982169 

T 
0 
0.13844 x 
0-57825 x 
0.131 08 x lo-' 
0.23301 x lo-' 
0.36007 x lo-' 
0.508 78 x lo-' 
0.56249 x lo-' 
0.595 59 x 10-' 
0.601 16 x 10-l 
0.60676 x lo-' 
0.61237 x 10-1 
0.61799 x lo-' 

V 

0 
0.13890 x 
0.57967 x lop2 
0.13390 x 10-l 
0.24091 x lo-' 
0.377 56 x lo-' 
0.542 30 x lo-' 
0.603 19 x lo-' 
0.641 11 x lo-' 
0.647 53 x lo-' 
0.653 98 x 10-1 
0-66046 x 10-' 
0.666 96 x lo-' 

v, 8 8 2  

0 0 
0.84191 x - 0 . 4 6 3 1 8 ~  
0.33161 x -0.64231 x 
0 . 7 2 2 9 0 ~  lo-' -0'28231 x 
0.12302 x lo-' - 0'79077 x 
0.18230X 10-1 -0.17491 x lo-' 
0 . 2 4 6 8 6 ~  lo-' -0.33523 x 
0 . 2 6 8 9 5 ~  lo-' -00.40703 X lo-' 
0.282 23 x 10-l - 0.45525 x lo-' 
0.28444 x lo-' - 0.46369 x lo-' 
0.28665 x lo-' - 0.472 24 x lo-' 
0.28886 x lo-' - 0 . 4 8 0 9 0 ~  lo-' 
0.291 07 x 10-l - 0.489 69 x lo-' 

TABLE 10. Properties of the steady wave of degree 1 at K = 0.6 as a function of 
the wave semi-height h. The scaling is such that 7 = 1 
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